Różnicowe wychylenia lotek w modelach

O co w tym wszystkim chodzi...

Bardziej zaawansowanie modelarze, często słyszeli o różnicowym wychyleniu lotek, ale rzadko można usłyszeć rozsądną odpowiedź, dlaczego tak się robi. Po pierwsze, mówiąc o różnicowości, mamy tu na myśli niesymetryczne wychylenia lotek - do góry więcej, do dołu mniej, a po drugie nie jest to takie proste do wyjaśnienia. No ale spróbujemy...

Rys: Graupner - Programmier-Handbuch MC-24

Co się dzieje w zakręcie?

 

Model (przyjmijmy najpierw model szybowca i to nie akrobacyjnego) sterowany jest jak prawdziwy szybowiec w trzech osiach. Pionowej - sterem wysokości, poziomej - sterem kierunku oraz poprzecznej - lotkami.

 

Rys. Zmodyfikowany z - Helmut Drexler "Der RC-Pilot" NV-Verlag

 

Aby wykonać prawidłowy zakręt, powinniśmy przechylić model lotkami i jednocześnie proporcjonalnie do ich wychylenia, w stronę zakrętu wychylić ster kierunku. I tu trzeba wspomnieć, że stopień wychylenie steru kierunku, w stosunku do wychylenia lotek jest niezależny od prędkości modelu (na marginesie dodajmy, że z wyjątkiem, gdy przy zbyt małej prędkości jesteśmy na granicy przeciągnięcia). Ta niezależność wychylenia steru kierunku od prędkości, pozwala na mechaniczne sprzężenie lotek ze sterem kierunku, co czasami jest stosowane w szybowcach i konstrukcjach ultralekkich. Tak samo w modelarstwie można stosować tzw. combiswitch - czyli elektroniczne (wyłączalne) zmiksowanie tych dwóch funkcji. Ja osobiście tegoż w moich modelach nie stosuję, ale wśród braci modelarskich szybowników nleżę tu do mniejszości. Pomińmy tu jeszcze, celowo i dla uproszczenia, konieczność korekty sterem wysokości, bo ta jedna z możliwych osi obrotu modelu tym razem nie odgrywa w naszych rozważaniach żadnej roli.

 

Zauważmy co dzieje się z modelem, w którym zostaną wychylone lotki. Powiedzmy, że lewa lotka do góry prawa do dołu. Model zgodnie z naszymi oczekiwaniami zacznie wzdłuż własnej osi obracać się w lewo, ale to nie wszystko! Jednocześnie zaobserwujemy, że nos modelu odchyli się w prawo! Normalnie tendencja ta zostaje skorygowana sterem kierunku, ale czemu ona powstaje i jak można jej przeciwdziałać?

 

Dlaczego ?

 

Tu mamy kilka powodów, i zacznijmy od tego, który najczęściej jest znany, ale w rzeczywistości jest najbardziej błahym.

 

  • moment obracający model w osi podłużnej powstaje na skutek wychylenia lotek. Lotki wychylając się zmieniają profil płata i lotka wychylająca się do góry zmniejsza jego nośność w części lotkowej, a odwrotna strona z lotką wychyloną do dołu nośność zwiększa. Tym samym powstaje moment obracający model wzdłuż jego osi. Jednak profile płatów nie są symetryczne i ta asymetria potęguje się poprzez wychylone lotki i wytwarza także niesymetryczne opory powietrza. Ten fakt jest często przytaczany jako powód negatywnego momentu obracającego nos modelu w stronę przeciwną do zamierzonego zakrętu. Jednak, pomimo bezsprzecznej asymetrii działających sił (oporu aerodynamicznego profilu) nie jest to wszystko.

  • Zajmijmy się więc dokładniej naszym momentem obracającym model, a wynikającym z różnic siły nośnej płatów. Tu się dzieje nieco więcej i w grę, do zmiany siły nośnej dochodzi opór indukowany. I tu moje uproszczenia przyprawią prawdziwego aerodynamika o zawrót głowy, gdy stwierdzę, zgodnie jednak z prawdą, że opór indukowany wynikający ze zmiany nośności profilu, także niesymetryczny, powoduje, iż lotka wychylona w dół indukuje większyszy opór niż ta druga wychylona w górę. Mamy więc już moment, starający się obrócić model w kierunku przeciwnym do jego przechylania powodowanego lotkami. To jest jeszcze jednak stosunkowo mała siła i dopiero teraz przejdziemy do najważniejszej przyczyny.

  • Tu jest jednakta sprawa jeszcze bardziej skomplikowana. Spróbujmy jednak tym, co do tego momentu dotarli i nie zwątpili, trochę bardziej obrazowo tą sprawę przedstawić. Gdy wychylamy lotki, model zaczyna wykonywać ruch obrotowy wzdłuż swej osi. Z tego obrotu wynika zmiana kąta natarcia płata i to niesymetrycznie wzdłuż całej jego długości! Wyobraźmy sobie to, jako płat "wkręcający się w powietrze"! Wiem - nie takie proste, ale dla uproszczenia wyobraźmy sobie, że trzymamy płat modelu w ręku, biegniemy szybko do przodu i ten płat unosimy i opuszczamy. Pomimo, że nie zmieniamy jego kąta natarcia w stosunku do poziomu poruszając go względem powietrza, to jednak ten ruch do góry i do dołu ten kąt zmienia! Tak samo jak końcówka płata poruszająca się do dołu podczas obrotu modelu wzdłuż jego osi z dużą prędkością kątową "zwiększa" kąt natarcia, to po przeciwnej stronie ten pozorny kąt natarcia maleje. I tu opór wzmożony poprzez zmianę kąta natarcia jest w przypadku płata "opadającego" mniejszy, niż płata wznoszącego się w obrocie (z lotką wychyloną ku dołowi). Tym samym wypadkowa siły nośnej oddziaływuje względem cięciwy,  w przypadku płata "opadającego" silniej do przodu. Ta różnica oporów powoduje jednocześnie obrót modelu w stronę przeciwną do zamierzonego zakrętu. I ten właśnie efekt jest o rząd wielkości 100 - 1000 większy od poprzednio opisanych. To też tłumaczy, czemu do czystego wykonania zakrętu musimy też używać steru kierunku, niezależnie od różnicowania lotek.

Rys. nadesłany przez Adama Dębowskiego, jako zilustrownie powyższej tezy

z następującym komentarzem: "Jest to tzw. obwiednia sił aerodynamicznych.

Na rysunku jest profil i wrysowany jest w niego szereg wypadkowych sił

aerodynamicznych. Nie widać z rysunku jakim kątom natarcia odpowiadają,

 widać jednak, że rosnąc razem z kątem natarcia zmienia się punkt zaczepienia

 siły (przesuwa się do przodu) i zmienia się kąt przyłożenia siły względem cięciwy"

 

Już słyszę głosy: ja "zakręcam" tylko lotkami i jest wszystko w porządku. Mogę odpowiedzieć - zakręcasz i jesteś nadal w powietrzu, tylko o sporo niżej, niż byś zakręcał prawidłowo - to znaczy z odpowiednim wychyleniem steru kierunku. A kogo to jeszcze nie przekonało, niech przeleci się jako pasażer szybowcem, to mu pilot pokaże to, czego on sam nie widzi pilotując swój model. Na limuzynie kabiny jest taka nitka z bawełny, która w locie musi zostać w osi szybowca niezależnie od tego czy szybowiec leci prosto czy zakręca. Ona to wskazuje, czy kadłub, porusza się równolegle do opływającego go powietrza i czy nie "dryfujemy" w zakręcie bokiem, wytwarzając sporo szkodliwych oporów. Kulka przechyłomierza i ta nitka - to dwie sprawy które przeklina zawsze kandydat na pilota...

 

W prawdziwym szybowcu tendencję do tego bocznego "dryfu" widać to bardzo wyraźnie. Wystarczy dosłownie 2 mm wychylenia lotek, bez korygowania sterem kierunku, by nos zaczął zakręcać. I tak samo w locie na plecach - pomimo, że wtedy lotki są jak gdyby odwrotnie różnicowane.

 

Po co więc stosować różnicowość?

 

No i teraz uważny czytelnik powie: po cóż więc różnicowanie, gdy przez to kompensujemy tylko tą mniej istotną cześć przyczyny, wynikającą z różnicy siły nośnej i indukowanego oporu? I tu znów będzie skomplikowanie...

 

Dwie rzeczy są tu istotne. Po pierwsze harmonijne zgranie sterów szybowca (samolotu). A po drugie, to "uciekanie nosa" powodowane obrotem, następuje dopiero podczas obrotu (i jest wprost proporcjonale do prędkości kątowej obracającego się szybowca), a to pierwsze - spowodowane różnicowaniem siły nośnej - natychmiast. Dlatego też, konstruktor stara się poprzez różnicowanie lotek, tą część sił powodujących natychmiastową reakcję skompensować, by sterowanie szybowcem było harmonijne i "miękkie".

 

A co z samolotami ?

 

To samo. Na nie działają te same prawa aerodynamiki. Jednak w szybowcach mających większe wydłużenie skrzydeł, jest ta asymetria bardziej zauważalna. A co z szybowcami / modelami akrobacyjnymi? Tu jest trochę inaczej, inne założenia wymuszają inne rozwiązania. Za cenę gorszych własności lotnych, konstruktor usiłuje stworzyć jak najneutralniejsze reakcje na stery. W locie plecowym, jak wspomniałem, to różnicowanie oddziałowyło by zupełnuie odwrotnie. Tak węc w modelach szybowców akrobacyjnch także jest celowe programowanie różnych faz lotu i faza "akro" pozbawiona jest różnicowania, a faza "termika" ma takowe, by szybciej i łatwiej było nam zdobyć utraconą w akrobacji wysokość.

 

No i na koniec jeszcze rada. Optimum różnicowania lotek w modelach możemy osiągnąć drogą prób i błędów. Najprościej jest mając aparaturę pozwalającą na różnicowanie przy pomocy odpowiedniej funkcji nadajnika. Wtedy najlepiej zrezygnować z różnicowania mechanicznego i metodą eksperymentowania dobrać odpowiedni procent różnicowania lotek. Różnicowanie mechaniczne jest też możliwe i do tego wkorzystujemy geometrię popychyczy lotek. Dobieranie optimum różnicowania lotek, można potraktować jako ostatnią część oblatywania modelu.  

 

Jak oblatać ?

 

No i znów nie będzie to takie proste. Jak wszystko o czym tu napisałem. Oblatanie stopnia różnicowości jest trudne, gdyż musimy być w stania z ziemi, dość dokładnie ocenić reakcję modelu w powietrzu. Tak więc w zależności od wielkości modelu, możemy tego dokonać latając na 80 - 150 m wysokości. I tak szybkość modelu powinna być taka, z jaką zwykle latamy w termice. Pogoda musi być bezwietrzna. Lecąc chwilę po prostej ze sterami w neutrum, energicznie ale niedużo wychylamy lotki. Ot tak, by model przechylił się nie więcej niż 30°. W tym pierwszym momencie podczas wychylynia lotek, model nie powinien mieć tendencji do zmiany kierunku lotu. Ale tylko w tym pierwszym momencie. Gdy model lekko odchyli tor lotu w stronę przeciwną do wychylenia lotek, należy różnicowość powiększyć i odwrotnie. Trudność polega na właściwej ocenie reakcji modelu. Najpierw metodą prób i błędów staramy się znaleźć optymalne ustawienie lotek, ale końcowa ocena następuje dopiero po wykonaniu i łagodnych zakrętów z użyciem steru kierunku i stwierdzeniu, że model nie ma tendencji do trawersowania. Wtedy też dopiero, jeżeli ktoś chce zaprogramować "combi switch" - czyli mikser lotek ze sterm kierunku, można eksperymentalnie dobierać stopień wychylenia steru kierunku w stosunku do lotek. Ważne jest jednak by ten mikser, był tak zaprogramowyny, że lotki "zabierają z sobą" ster kierunku, ale nie odwrotnie. Bardzo istotne jest także, by mikser ten był aktywowany wylącznikiem. Do holu, akrobacji czy lądowania musimy mieć możliwość indywidualnego sterowania wszystkimi sterami.  

 

Mam nadzieję, że moje starania maksymalnego uproszczenia tych skomplikowanych zależności pozwoliły Wam doczytać ten trudny temat do końca i że przyczyniło się to do lepszego zrozumienia mechaniki i aerodynamiki lotu.

 

(c) Piotr Piechowski

Podziękowania dla Adama Dębowskiego za uwagi i konsultację!

13.08.2003